

Nov 20-10:17 AM

Nov 24-9:32 PM

6.3: Vectors in the Plane

We'll study this section for the next three days, review on Monday, and then take a quiz (Sections 6.1-6.3) on Tuesday!

So...what's a vector??

Definition. A vector is a quantity that involves both magnitude and direction	
Scalars	Vectors

Nov 24-9:42 PM Nov 24-10:00 PM

Nov 24-10:02 PM

Nov 24-10:23 PM

I need volunteers...

- 1. Tail of a vector. (0,0)
- 2. Tip of the vector. (4,2)
- 3. Double the vector. $\langle 8, 4 \rangle$
- 4. Half the vector. <a j
- 5. Make an opposite vector. $\langle -4 2 \rangle$

<4,2>

Nov 24-10:28 PM Oct 22-4:28 PM

Vector Addition (Tip to Tail Method) Example Add $\bar{u} = \langle 1, 4 \rangle$ and $\bar{v} = \langle 5, -2 \rangle$

Nov 24-10:31 PM

Nov 24-10:31 PM

Nov 24-10:42 PM Nov 20-5:16 PM

What do you think of when you hear the term "unit"?

Oct 29-9:07 AM Nov 24-10:48 PM

Definition. A unit vector, **u**, is a vector with <u>length 1</u>.

Q: How do we denote the length of a vector \mathbf{v} ?

Α:

Q: Let's say $\|\mathbf{v}\| = 5$. What would we need to do to create a vector in the same direction as \mathbf{v} but with length (or magnitude) equal to 1?

Δ.

To find a unit vector \mathbf{u} in the direction of \mathbf{v} :

Exampl

Find a unit vector in the direction of $\vec{v}=\left<3,-4\right>$; then verify it has a length of 1

p. 434, #35 (HW)

Nov 24-10:49 PM

Nov 24-10:54 PM

2 Forms of a Vector

1) Component Form: $\left\langle v_1,v_2 \right
angle$

2) Linear Combination: $v_1 \vec{i} + v_2 \vec{j}$

EX. Given $\vec{v} = \langle 4, 7 \rangle$ prove $4\mathbf{i} + 7\mathbf{j}$ is the linear combo.

Find a vector \mathbf{v} with the given magnitude and the same direction as \mathbf{u} . $||\mathbf{v}||=10$ $\mathbf{u}=3\mathbf{i}+4\mathbf{j}$

p. 434, #47 (HW)

Nov 24-10:42 PM

Nov 24-11:16 PM

Suppose that ${\bf u}$ is a unit vector with direction angle ${\boldsymbol \theta}$. If ${\bf v}$ =a ${\bf i}$ +b ${\bf j}$ is any vector that makes an angle ${\boldsymbol \theta}$ with the positive x-axis, then it has the same direction as ${\bf u}$ and you can write:

Nov 24-11:20 PM Nov 24-11:23 PM

Example

Find the magnitude and direction angle given

 $\vec{v} = 8(\cos 135^{\circ} \vec{i} + \sin 135^{\circ} \vec{j})$

Example

Find the component form of the sum of $\bf u$ and $\bf v$ with direction angles θ_u =30° and θ_v =90° given $\left\| \vec{u} \right\| = 2$ and $\left\| \vec{v} \right\| = 2$

Note: \mathbf{u} is NOT a unit vector in this problem. The magnitude $\neq 1$.

p. 434, #73 (HW)

Nov 24-11:24 PM

Nov 24-11:28 PM

Let's talk through #81 together...

HOMEWORK

...all of 6.3 will be due Monday; the underlined portion is what we wen over today...

6.3 (p. 433): 1-33 (odd), 35-59 (odd), <u>61-81 (odd, omit 77)</u>

Nov 24-11:33 PM Nov 24-10:42 PM