Tangent Line to a Curve

 Name \qquad1. Draw the secant line between P and S_{1}. Draw the secant line between P and S_{2}.

Find the slope between the points marked P and S_{1}. Find the slope between the points marked P and S_{2}. Find the distance between the \mathbf{x}-coordinates of S_{1} and P and of S_{2} and P. (We refer to this difference as h.)
(a)

(b)

(c)

Slope of secant line between P and S_{1} \qquad
Slope of secant line between P and S_{2} \qquad $\mathrm{h}=$ \qquad Recall the formula for slope (rise over run) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slope of secant line between P and S_{1} \qquad Slope of secant line between P and S_{2} \qquad
$\mathrm{h}=$ \qquad

Slope of secant line between P and S_{1} \qquad
Slope of secant line between P and S_{2} \qquad
$h=$ \qquad

Cumulative Questions (for parts a-c)

I. What value is the secant slope approaching? \qquad
II. What value is h approaching?
III. Draw the tangent line to Point P on graph (c).
IV. Is the slope of the tangent line you drew in part (III) the same as your answer to question (I)? \qquad
2. Draw a small segment of a line that is tangent to the given curve at each indicated point. (Segments should hug the curve.) Specify whether each slope is positive, negative, or zero by using the symbols,+- , or 0 next to each point.

3. Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for each given function.
(a) $f(x)=9-5 x$
(b) $f(x)=4 x^{2}-5 x+9$

