Precalculus Warm Up

1. Recall the standard quadratic function $f(x)=x^{2}$. What's the vertex of this parabola?
$(0,0)$
2. What would the new function be if you were to shift the standard parabola up 3 units? What's the vertex now? $f(x)=x^{2}+3 \quad(0,3)$
3. Now take $f(x)=x^{2}$ and shift it to the right 4 units. Give the equation and vertex. $f(x)=(x-4)^{2} \quad(4,0)$
4. Finally, take $f(x)=x^{2}$ and shift it both up 3 and to the right 4 units. Give the equation and the vertex.

Example 1 p. 100 \#30
Write the standard form of the quadratic function with vertex $\binom{h, 1}{1}$ and whose graph passes through the point $(6,-7)$. Then find where $f(x)>0$.

Write the standard form of the quadratic function with vertex $(1,2)$ and whose graph passes through the point $(3,-6)$. Then find where $f(x)>0$.

$$
(0,0)(2,0)
$$

So...what is important about a quadratic?

A football is thrown at a point 6 feet above the ground at a velocity of 60 feet per second at an angle of 45 degrees with respect to the ground. The path of the football is given by the function $f(x)=-0.0168 x^{2}+\mid x+6$, where $f(x)$ is the height of the football (in feet) and x is the horizontal distance from the quarterback (in feet). What is the maximum height reached by the football? How far will the ball g9.88)

$$
\begin{aligned}
& \text { the maximum height reached by the tootball? How far will the } \\
& \text { when it hits the ground? } \\
& \begin{aligned}
x=\frac{-b}{2 a} & \left.=\frac{-1}{2(-0.0168)} f(x)=-0.0168(29.76)^{2}+29.76+568\right)=20.88 f+ \\
& =\frac{-1}{-.0336} \\
& =29.76
\end{aligned}
\end{aligned}
$$

Conclusion

1. Explain how to write the equation of a quadratic in vertex-form from a vertex and point on the parabola.
2. What are important aspects of a parabola?
3. Questions???????

Homework

Page 100

29-34 all (also find $f(x)<0$), 55, 57,
59, 61

