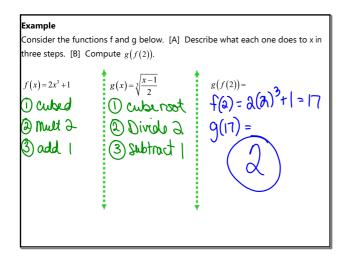
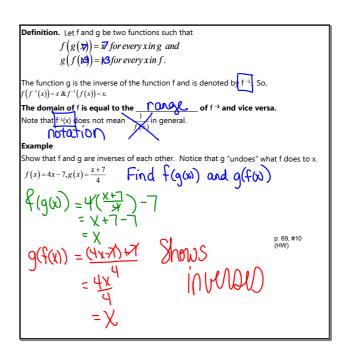

Let
$$f(x) = x - 30, g(x) = x + 30$$
. Find $(f,g)(x)$ and $(g,f)(x)$.

$$f(g(x)) f(x+30) = x+30-30 = X g(f(x)) g(x-30) = x-30+30 = X$$

$$\begin{array}{ll}
\mathcal{G}(x) & f(x) = \frac{1}{4}(x-1) & g(x) = 4x+1 \\
f(g(x)) & f(4x+1) = \frac{1}{4}(4x+1-1) = \frac{1}{4}(4x) = \chi \\
g(f(x)) & g(\frac{1}{4}(x-1)) = 4(\frac{1}{4}(x-1)) + 1 \\
& = 4(\frac{1}{4}x-\frac{1}{4}) + 1 \\
& = \chi - 1 + 1 = \chi
\end{array}$$

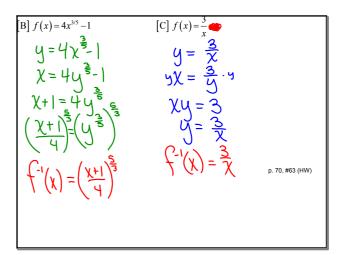

Jul 31-1:30 PM


Jan 13-10:30 AM

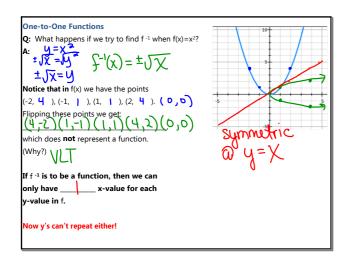
If a function f is a set of ordered pairs (x, y), then we can "undo" f by reversing the components of all the ordered pairs. The result (y, x) may or may not be a function. **Example**Find the inverse of the relation for [A] and [B].

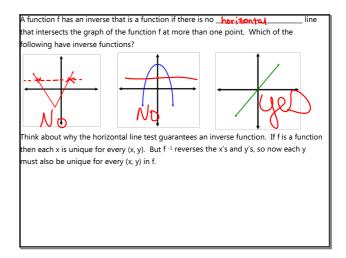
[A] $\{(1,2),(3,4),(5,6)\}$ [B] $\{(1,3),(2,3),(4,6),(5,6)\}$ [NUTSL $\{(3,1),(3,3),(6,5)\}$ $\{(3,1),(3,3),(6,5)\}$ [A] $\{(3,1),(3,3),(6,5)\}$ [A] $\{(3,1),(3,3),(6,5)\}$ [B] $\{(3,1),(3,3),(6,5)\}$

Feb 28-11:35 AM


Feb 28-11:39 AM

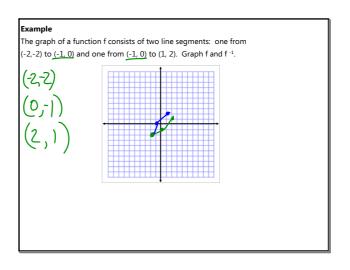
```
Finding the Inverse
(1) Replace f(x) with y
(2) Switch x and y
(3) Solve for y
(4) Replace y with f^{-1}(x)

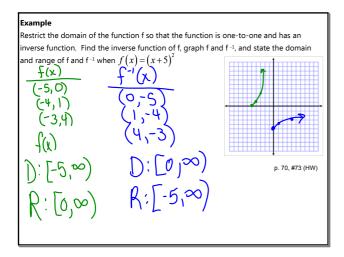

Example
Find the inverse f^{-1} when:
[A] f(x) = 2x - 7

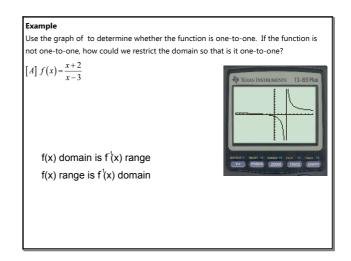

y = 2x - 7

x = 2y - 7
```

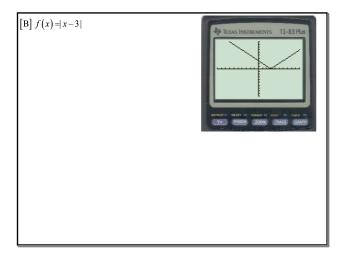

Feb 28-11:43 AM Feb 28-11:44 AM

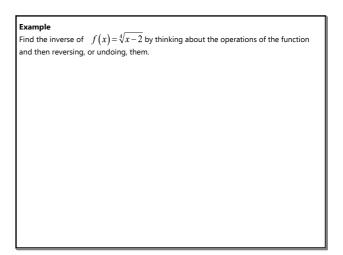



Feb 28-11:45 AM

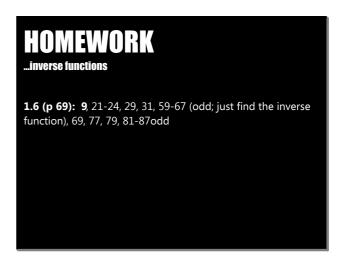

Feb 28-11:48 AM

Definition. A one-to-one function is a function in which no two different ordered pairs have the same second component. Only one-to-one functions have the same second component to the same s


Feb 28-11:50 AM Feb 28-11:52 AM



Feb 28-11:53 AM


Feb 28-11:54 AM

Feb 28-11:55 AM Feb 28-11:58 AM

Q: What is the inverse of a function? A:	
lasrever	
reversal	

Feb 28-12:00 PM Aug 1-10:32 AM