\qquad
\qquad

1. Which set of data best represents the data on the scatterplot?

Memory Loss
A.

Time	10	30	60	80	100
Memory	95	60	40	30	20

B.

Time	10	30	60	80	100
Memory	20	30	40	60	95

C.

| Time | 10 | 30 | 60 | 80 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Memory | 100 | 80 | 60 | 40 | 20 |

D.

Time	10	30	60	80	100
Memory	85	60	50	40	20

2. There is no correlation between a person's hair length and shoe size. Which scatter plot best represents this situation?

Hair Length (in.)

Hair Length (in.)
C.

3. Which equation most closely models the data in the scatter plot?
A. $y=x$
B. $y=-x$
C. $y=2 x$
D. $y=-2 x$

4. Which equation represents the line of best fit for this scatterplot?
A. $y=-x-5$
B. $y=x-5$
C. $y=-x-2$
D. $y=x-2$

5. The following table represents the number of goals scored in the Men's World Cup from 1962 through 1998. Which of the following scatterplots represents this data?

Year	1962	1966	1970	1974	1978	1982	1986	1990	1994	1998
Goals	90	90	95	97	103	145	135	115	140	170

A.

B.

C.

7. The cost (in cents) of a first-class US Stamp from 1917 through 2007 is shown in the scatterplot. What is most likely the cost of a $1^{\text {st }}$-class stamp in 2015 based upon the curve of best fit?
A. 42
B. 45
C. 47
D. 53

8. Tyler compared his test scores in Algebra 2 with the number of hours of tv he watched on the night before each test. If Tyler watches tv for 2.5 hours, what is the most likely test score based upon the curve of best fit?

9. Which set of data best fits this scatterplot?
A.

x	0	1	2	3	4
y	100	59	12	28	31

B.

x	0	1	2	3	4
y	50	38	17	10	25
X	100	59	23	18	10
y	0	1	2	3	4
x	0	1	2	3	4
y	100	59	23	18	10

10. Determine what type of correlation this scatterplot has.
A. Weak, negative
B. Strong, negative
C. Weak, positive
D. Strong, positive
E. No correlation

11. Determine what type of correlation this scatterplot has.
A. Weak, negative
B. Strong, negative
C. Weak, positive
D. Strong, positive
E. No correlation

Growth vs. Time

Time	Growth
2	1
4	2
5	3.5
6	6
6.5	8.5

Raymundo wanted to know if sons of taller fathers tend to be taller. He gathered a representative sample of fathers and sons and measured their heights. This graph shows the relationship between the heights of fathers and sons (in inches) for Raymundo's sample.

The graph shown below shows the relationship between population density and pollution per person for 36 Japanese cities.

Carbon dioxide emissions per person

Scatterplot of outdoor temperature in relation to cricket chirps.

Temperature Data and Cricket Chirps (Excerpt)	
Temperature (Fahrenheit)	Number of Chirps (in 15 Seconds)
57	18
60	20
64	21
65	23
68	27
71	30
74	34
77	39

Name	Height (cm)	Weight (kg)
Fred	190	82
LLucy	168	61
Jill	175	68
Li	188	91
Harry	175	85
Gertrude	151	59
Peggy	160	65

Direction

