Bellwork 1-11-16

 Write the equation for an ellipse with a center at (-7, 2), a major axis parallel to the y-axis, a major axis length of 8, and a minor axis length of 10.

 $\frac{35}{(x+j)_{*}} + \frac{10}{(a-5)_{*}} = 1$

2. Write the equation for an ellipse with a center at (0, 6), a major axis parallel to the x-axis, a major axis length of 14, and a minor axis length of 2.

$$\frac{79}{\chi_3} + \frac{1}{(3-0)_3} = 1$$

Dec 19-10:06 PM

Dec 19-10:09 PM

Today, we'll be working with hyperbolas...

- 3 Things You Need to be Able to do with Hyperbolas:
- determine whether an equation is that of a hyprbola
- determine the directions of opening by looking at an equation
- determine the distance left/right or up/down for the vertices by looking at an equation

Dec 20-12:06 PM Dec 20-12:07 PM

The equation for a horizontal hyperbola

that opens left and right

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \times x^2 \text{ is } 1\text{st}^*$$

where (h, k) is the center and

a(under the x) is the distance left & right from the center

The equation for a vertical hyperbola

that opens up and down

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$
 y² is 1st

where (h, k) is the center and

a(under the y) is the distance up & down from the center

Dec 19-10:10 PM

Dec 19-10:10 PM

Here's the graph of $\frac{(y+1)^2}{25} - \frac{(x-3)^2}{16} = 1$ What's the center? 3What are the directions of opening? What's the center? 3What's the center? 3What's the center? 3What's the center? 3What's the directions of opening?

Directions of Openings of a Hyperbola

Determining Directions of Opening:

- if the x² comes 1st, the hyperbola will be horizontal opening left & right (b/c the x-axis runs horizontally)
- if the y² comes 1st, the hyperbola will be vertical opening up & down (b/c the y-axis runs vertically)

Dec 20-11:31 AM Dec 20-12:19 PM

Determine the center and directions of opening for the

nyperbola.
1.
$$\frac{(x-3)^2}{16} - \frac{(y+1)^2}{25} = 1$$

2. $\frac{x^2}{16} - \frac{y^2}{4} = 1$
3. $\frac{(y-2)^2}{25} - \frac{(x+7)^2}{16} = 1$ (-7, -2) While which the second of the se

3.
$$\frac{(y-2)^2}{25} - \frac{(x+7)^2}{16} = 1$$
 $\left(-7, 2\right)$ Up down

$$4.\frac{(x+5)^2}{4} - \frac{y^2}{100} = 1$$
 (-5, 0)

5.
$$\frac{y^2}{16} - x^2 = 1$$
 (0)0)

Jan 6-12:52 PM

Dec 20-11:31 AM

Vertices of Hyperbola

Determining Vertices of a Hyperbola:

- If x² is first, square root 1st denominator and go left and right from the center that distance. Label points.
- If y² is first, square root 1st denominator and go up and down from the center that distance. Label points.

Dec 20-12:25 PM Jan 6-12:52 PM

Conclusion

- 1. How do you tell if you have the equation of a hyperbola?
- 2. How do you tell which directions it opens?
- 3. How do you get the vertices?
- 4. Questions???

Assignment Hyperbola Wkst

Jan 6-3:19 PM Dec 20-11:53 AM