Algebra II Warm Up

2-2-15

Allowance

Would you like to get a \$25 allowance each week or get paid 2 cent the first day of the month, 4 cents the second day, 8 cents the third day, doubling each day of the month? Which would your parents agree to?

Sun	M	T	W	TH	F	Sat
¹ . DQ	².04	80.°	ال.ا	°.32	164	¹ 1. 28
å.5 6	219	10.24	36.48	4096	¹³ 81.92	163.84
3 ₂₇ .6	6553	17 2	18	19	20	21
22	23	24	25	26	27	.02

268,435,456

What is happening with the pattern?

y=2*

What would the graph look like?

x-int: <u>none</u>

y-int : (0,1)

Domain: (-\infty \infty)

Range: () \(\infty \)

Asymptote: <u>Ú</u> ≈ (

Now let's graph

What is happening?

x-int: <u>None</u>

y-int : (0 1)

Domain: (->> >>)

Range: $(0, \infty)$

Asymptote: 4=0

$$y = 2^x$$
 It is a Growth > 1

$$y = 2^x$$
 It is a Growth > 1
 $y = \left(\frac{1}{2}\right)^x$ What causes growth or decay?

An exponential equation is written as

$$y = a\underline{b}^x$$

 $y = ab^x$

The a value is the initial value. It does not cause growth or decay.

The b value is the growth or decay value.

If b > 1, then it is a growth.

If 0<b<1, then it is a decay.

Tell whether each is an example of exponential growth or exponential decay.

1.
$$y = 10(4)^{x}$$
 2. $y = (0.8)^{x}$ 3. $y = \frac{1}{3}(\frac{3}{2})^{x}$

4.
$$y = 0.5 \left(\frac{5}{8}\right)^x$$

2.
$$y = (0.8)^x$$

5.
$$y = 100 \left(\frac{4}{5}\right)^{-x}$$

3.
$$y = \frac{1}{3} \left(\frac{3}{2} \right)^x$$

6.
$$y = (7)^{-x}$$

Graph the following.

$$y = 2\left(\frac{1}{4}\right)^x$$

x-int: _____

y-int :_____

Domain:_____

Range:_____

Asymptote:____

Conclusion

- 1. What value tells you if the equation is a growth or decay? $y=ab^{\times}$
- 2. How do you know it is an exponential growth? >
- 3. What do we need to do to graph an exponential equation? $\frac{x}{2}$

Exponential Growth and DecayWorksheet