\qquad

Write the inverse of the conditional statement.

1. If two angles are adjacent, then they have a common vertex.

Write the contrapositive of the conditional statement.
2. If a quadrilateral is regular, then it is a square.

Write the converse of the conditional statement.
3. If a geometric figure is a circle, then it is not a polygon.

Write the contrapositive of the conditional statement.
4. If two angles are vertical angles, then they do not have a common side.

Write the inverse of the conditional statement.
5. If a polygon is concave, then it is not regular.

Write the converse of the conditional statement.
6. If an angle measures 159°, then it is an obtuse angle.

Write the inverse of the conditional statement.
7. If an angle is not acute, then its measure is greater than or equal to 90°.

Write the contrapositive of the conditional statement.
8. If two lines are skew, then they do not intersect.

Conditional Statements \#2

Write the converse of the conditional statement.
9. If x is divisible by two, then it is an even number.

Write the contrapositive of the conditional statement.
10. If an angle is a straight angle, then the sides of the angle are opposite rays.

Write the inverse of the conditional statement.
11. If a polygon is not concave, then all of the interior angles of a polygon measure less than 180°.

Write the converse of the conditional statement.
12. If two figures are the same shape and size, then they are congruent.

Write the converse of each true statement. Decide whether the converse is true or false. If the converse is also true, combine the statements to write a true biconditional statement. If the converse is false, provide a counterexample.
13. If an angle measures 76°, then it is an acute angle.
14. If a polygon is an octagon, then it has eight sides.
15. If two coplanar lines do not intersect, then the lines are parallel.

