Trashketball

1. Write the equation of a quadratic function in vertex form that has a vertex at (-1, -2) and passes through (-3, 10).

Feb 8-3:45 PM

Feb 5-5:42 PM

1. Write the equation of a quadratic function in vertex form that has a vertex at (-1, -2) and passes through (-3, 10). $(1 = 0) (\gamma - 1)^{2} + K$

$$|0=a(-3+1)^{3}-2$$

 $|0=a(4)-2|$
 $|a=4a$
 $3=a$

2. For $f(x)=3(x+1)^2-2$, find where f(x)<0. Round to 2 decimals.

Feb 5-5:42 PM Feb 5-5:42 PM

2. For $f(x)=3(x+1)^2-2$, find where f(x)<0. Round to 2 decimals.

3. Your factory produces lemon-scented air fresheners.

The guy in accounting says that the cost for producing *x* thousands of units a day can be approximated by the formula, *C*=0.04*x*²-8.504*x*+25302. What daily production will minimize your costs?

Vertex

Feb 5-5:42 PM

Feb 5-5:42 PM

3. Your factory produces lemon-scented air fresheners.

The guy in accounting says that the cost for producing ** thousands of units a day can be approximated by the formula, *C=0.04x²-8.504x+25302*. What daily production will minimize your costs?

106.3 thousand units or 106,300 units

- 4. Write $x^4 + x^2 12$ as the...
 - a) product of factors that are irreducible over the rationals
 - b) product of factors that are irreducible over the reals
 - c) completely factored

Feb 5-5:42 PM Feb 5-5:42 PM

- 4. Write $x^4 + x^2 12$ as the...
 - a) product of factors that are irreducible over the rationals
 - b) product of factors that are irreducible over the reals
 - c) completely factored
 - a) $(x^2+4)(x^2-3)$
 - b) $(x^2+4)(x-\sqrt{3})(x+\sqrt{3})$
 - c) $(x+2i)(x-2i)(x-\sqrt{3})(x+\sqrt{3})$

5. Use the graph of the polynomial function to determine whether the degree is even or odd, the leading coefficient is positive or negative, and the end behavior.

As x=0

As x > -00
F(x) >

Feb 5-5:42 PM

Feb 5-5:42 PM

5. Use the graph of the polynomial function to determine whether the degree is even or odd, the leading coefficient is positive or negative, and the end behavior.

degree: even lead coeff: + As $x\rightarrow\infty$, $f(x)\rightarrow\infty$ As $x\rightarrow-\infty$, $f(x)\rightarrow\infty$

6. Given $f(x) = -x^4 + 4x^2 - 3x - 1$, use the Intermediate Value Theorem to show a zero exists on the interval [-3, -2].

6. Given $f(x) = -x^4 + 4x^2 - 3x - 1$, use the Intermediate Value Theorem to show a zero exists on the interval [-3, -2].

f(-3)=-(-3)⁴+4(-3)²-3(-3)-1=-37
f(-2)=-(-2)⁴+4(-2)²-3(-2)-1=
$$\frac{13}{3}$$

Yes, there's a zero by IVT,
since f(-3)=-37<0< $\frac{13}{3}$ =f(-2)

7. Write a polynomial in standard form that has the zeros -1, $3-\sqrt{2}$, $3+\sqrt{2}$

Feb 5-5:42 PM

Feb 5-5:42 PM

- 7. Write a polynomial in standard form that has the zeros -1, $3\sqrt{2}$, $3+\sqrt{2}$, $(\chi+1)$, $(\chi-3+\sqrt{3})$, $(\chi-3-5)$, $(\chi-3+\sqrt{3})$, $(\chi-3+\sqrt{3})$, $(\chi-3)$,
- 8. Given the following factors of f(x), find the remaining factors and write the complete factorization for f(x).

 Then list all real zeros of f(x). $f(x) = x^4 + x^3 5x^2 3x + 6; \text{ factors: } (x-1), (x+2)$ $\begin{vmatrix} 1 & 1 & -5 & -3 & -6 \\ 1 & 2 & -3 & -6 & -2 \\ 1 & 3 & -3 & -2 \\ 1 & 2 & -3 & -2 \\ 2 & 2$

8. Given the following factors of f(x), find the remaining factors and write the complete factorization for f(x). Then list all real zeros of f(x).

$$f(x) = x^4 + x^3 - 5x^2 - 3x + 6$$
; factors: (x-1), (x+2)

factored: $(x-1)(x+2)(x-\sqrt{3})(x+\sqrt{3})$

zeros: 1, -2,√3,-√3

9. List all the <u>possible</u> rational zeros of f. Then determine all the real rational zeros of f.

$$\frac{f(x) = \frac{4x^{3}}{2} \cdot 15x^{2} \cdot 7x + \frac{12}{P}}{q} : \frac{\pm 1 \pm 2 \pm 3 \pm 4 \pm 6 \pm 13}{\pm 4 \pm 4 \pm 13}$$

Feb 5-5:42 PM

Feb 5-5:42 PM

9. List all the possible rational zeros of f. Then determine all the real rational zeros of f.

$$f(x)=4x^3-15x^2-7x+12$$

possible:
$$\pm \frac{1}{4}, \pm \frac{1}{2}, \pm \frac{3}{4}, \pm 1, \pm \frac{3}{2} \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$$

real: $-1, \frac{3}{4}, 4$

10. Determine the domain for $f(x) = \frac{x-1}{(x^2-x-6)} = 0$ (x-3)(x+3) = 0 $x \neq 3 \quad x \neq -3$

Feb 5-5:42 PM

Feb 5-5:42 PM

10. Determine the domain for $f(x) = \frac{x-1}{x^2 - x - 6}$

$$x \neq -2, 3$$
OR
 $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$

11. Determine the slant asymptote for $f(x) = \frac{x^2 + 3x - 4}{x + 3}$

Feb 5-5:42 PM

Feb 5-5:42 PM

12. For $f(x) = \frac{x^2 + 1}{x^2 + n}$, find all of the asymptotes, identify domain and range, and state where f(x) > 0.

Feb 5-5:42 PM Feb 9-10:09 AM