3.3: Properties of Logarithms

(1) Convert to exponential form: $\log_b(M) = R$

(2) Use rules of exponents to simplify the following:

[A]
$$b^m \times b^n = \bigcup_{\substack{n \in \mathbb{N} \\ |n|}} [B] (b^m)^n = \bigcup_{\substack{n \in \mathbb{N} \\ |n|}} [C] \sqrt[n]{b} = \bigcup_{\substack{n \in \mathbb{N} \\ |n|}} [D] \frac{b^n}{b^m} = \bigcup_{\substack{n \in \mathbb{N} \\ |n|}} [D] \frac{b^n}{b^m$$

$$[C] \sqrt[n]{b} = \int_{0}^{1}$$

$$[D]\frac{b^n}{b^m} = \bigcap_{n \to \infty} n - m$$

Product Rule Recall	$b^m b^n = b^m$	tn 109232
$\log_2 8 + \log_2 4 =$	32	$5 = \log_2 32$
$\log_3^2 9 + \log_3 3 =$	27	$3 = \log_3 27$
$\log_3 \frac{1}{9} + \log_3 81 =$	9	$2 = \log_3$
$\log_5^1 5 + \log_5 1 =$	(2)	$\int = \log_5 5$

Q: Can you generalize this idea?

A: Let
$$b$$
, M , and N be positive real numbers with $b \ne 1$.
Then $log_b(M) + log_b(N) = 1$

Mar 13-11:22 AM Mar 13-11:25 AM

Example 1

Use the Product Rule to expand; simplify if possible.

[A]
$$\log_6(7 \times 11) = \log_6 7 + \log_6 |$$

$$[B] \log(100x) = \log 100 + \log x$$

$$2 + \log x$$

Mar 13-12:27 PM

Quotient Rule
Recall $\frac{b^m}{b^n} =$

Let b, M, and N be positive real numbers with $b > 0, b \ne 1$ Then

$$\log_b M - \log_b N = \frac{M}{N}$$

Notice: The Product Rule: $\stackrel{\checkmark}{}$ on inside \rightarrow $\stackrel{+}{}$ on outside The Quotient Rule: $\stackrel{\circ}{}$ on inside \rightarrow $\stackrel{-}{}$ on outside

Use the Quotient Rule to expand:

$$[A] \log_8\left(\frac{23}{x}\right) = [B] \ln\left(\frac{e^5}{11}\right) = \log_8 23 - \log_8 x$$

$$[A] \log_8\left(\frac{23}{x}\right) = [B] \ln\left(\frac{e^5}{11}\right) = \log_8 x + \log_8 x$$

$$[B] \ln \left(\frac{e^5}{11}\right) =$$

logees

Mar 13-12:28 PM

Power Rule

Recall
$$(b^R)^P = \bigcup_{n=1}^{RP}$$

Let b, M, and p be positive real numbers with $b \neq 1$. Then

$$\sqrt{\log_h M^{\varrho}} = p \log_h M$$
.

Example 3

Use the Power Rule to expand:

[A]
$$\log_6 3^9 = 9 \log_6 3$$

[A]
$$\log_6 3^9 = 9 \log_6 3$$
 [B] $\ln \sqrt[3]{x} = \frac{1}{3} \ln \chi$

$$\log_b(M \times N) = \log_b M + \log_b N$$

$$\log_b(\frac{M}{N}) = \log_b \frac{M}{N} - \log_b N$$

$$\log_b M^p = 0$$

Inwords

The logarithm of a product is the sum of the logarithms.

The logarithm of a quotient is the difference of the logarithms.

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Example 4

[A]
$$\log_b(x^4\sqrt[3]{y}) = \log_b x^4 + \log_b y^3$$

 $4\log_b x^4 + \log_b y$

[B]
$$\log_5(\frac{\sqrt{x}}{25v^3}) =$$

$$\log_5 \chi^{\frac{1}{3}} - \log_5 25 - \log_5 y^3$$
 p. 211, #19, #37 (HW) $\frac{1}{3}\log_5 \chi - 2 - 3\log_5 y$

Mar 13-12:38 PM

Example 5

Condense into a single log.

$$[A] \log 25 + \log 4 = \log |OD| = 2$$

$$B \log(7x+6) - \log x = \log \frac{7x+b}{x}$$

Mar 13-12:39 PM

$\boxed{[C] 2 \ln x + \sqrt{\frac{1}{3} \ln(x+5)} = \ln x^{2} + \ln^{3} \sqrt{x+5} = \ln (x^{2} \sqrt{x+5})}$

[D]
$$2\log(x-3) - \log x = \log(x-3)^2 - \log x = \log(\frac{(x-3)^2}{X}$$

$$[E] \frac{1}{4} \log_b x - 2 \log_b 5 - 10 \log_b y =$$

Mar 13-12:40 PM

Use the change-of-base property and your calculator to evaluate $\log_{7} 2506$.

$$\log_b M = \frac{\log_a M}{\log_a b}.$$

$$\log_7 350b = \frac{\log 250b}{\log 7} = 4.022$$

p. 211, #1 (HW)

Mar 13-12:47 PM

[A] Decide whether the following are true or false.

[A] Decide whether the following are true or false.

•
$$\frac{\log \sqrt{2}}{|R|} = \frac{\log 2}{2}$$
 $\log 2^{\frac{1}{2}} = \frac{1}{2} \log 2 = \frac{\log 2}{2}$

• $\frac{\log_a 14 + \log_a x}{\log_a |A|} = \log_a 14 \times \log_a x$ Falce

3.1-3.2b and 3.2 worksheer due tomorrow

3.3 (p211):

1-25 (1,5,9's), 37-55 odd, 59-75 (eoo), 81-87 odd, 95

Project due Friday...Get R Dun

Mar 13-12:48 PM Feb 9-9:17 AM

$log_b(M) + log_b(N) = $		
Proof: (Don't be scared!)		
Assume these two statements hold:	Rewrite both as log equations over here:	
$b^R = M$ $b^S = N$		
§ Multiply left sides and right sides to make one equation:		
§ Combine those exponents:		
§ Rewrite as a log equation:		
§ Make a substitution and voila:		

Mar 13-12:24 PM

 $\log_b M^p = p \log_b M.$ Proof:
Assume this statement holds: Rewrite as log equation over here: $b^R = M$ • Raise both sides to the power of p:
• Combine those exponents:
• Rewrite as a log equation with base b:
• Make a substitution and voila:

Mar 13-12:33 PM

Change-of-Base Property		
The Change-of-Base Property state: For any log bases a and b and any		
$\log_b M =$ Proof:	$\frac{\log_a M}{\log_a b}$.	
Assume this statement holds: $b^{R} = M$ § Take \log_a of both sides:	Rewrite as log equation over here:	
§ Apply the Power Rule to the left side:		
§ Solve for <i>R</i> :		
Make a substitution and voila:		

Mar 13-12:45 PM Mar 13-12:50 PM

[B] Given that:

Find $\log_b 15b$.

 $log_b 3 \approx 1.0099$, and $log_b 5 \approx 1.609$,