Precalculus
Section 1.3
Graphs of Functions

WARM UP

 WHAT ARE THE TWO SCENARIOS YOU HAVE TO WATCH OUT FOR WHEN FINDING DOMAIN?

(1) Zero in den.

(2) negative inside Nadical

Aug 23-2:21 PM

Jul 31-10:59 AM

DO NOW

- WHAT DOES THE DIFFERENCE QUOTIENT REPRESENT?
- FIND THE DIFFERENCE QUOTIENT

$$\frac{f(x+h)-f(x)}{h}, h \neq 0 \text{ when } f(x) = 5x^{2}$$

$$(1) f(x+h) = 5(x+h)^{3}$$

$$= 5(x^{3}+3xh+h^{3})$$

$$= 5x^{3}+10xh+5h^{3}$$

$$(1) f(x+h) = 5x^{3}$$

$$= 5(x^{3}+3xh+h^{3})$$

$$= 5x^{3}+10xh+5h^{3}$$

$$(1) f(x+h) = 5x^{3}$$

$$(1) f(x+h) = 5x^{3}$$

$$(2) f(x) = 5x^{3}$$

$$(3) f(x) = 5x^{3}$$

$$(3) f(x) = 5x^{3}$$

$$(4) f(x) = 5x^{3}$$

$$(4) f(x) = 5x^{3}$$

$$(4) f(x) = 5x^{3}$$

$$(4) f(x) = 5x^{3}$$

$$(5) f(x) = 5x^{3}$$

$$(6) f(x) = 5x^{3}$$

$$(7) f(x)$$

Aug 25-8:28 AM

Jul 19-8:06 PM

Jul 19-8:06 PM Jul 19-8:06 PM

Now try one on your own. Use a graphing calculator to graph the function.

- State domain and range.
- State where the function is increasing, decreasing, or constant.
- State the relative minima and maxima (if they exist).
- State where f(x)>0.

$$f(x) = x^{\frac{2}{3}} - 2$$

PS--What does $x^{\frac{2}{3}}$ mean again??

Jul 19-8:06 PM

Jul 31-11:20 AM

DEFINITIONS

SOME

US IN **CALCULUS**

THAT WILL

Even Functions

1) Graphically: a function is even if f(x) is symmetric about the y-axis.

2) Algebraically: a function is even if f(-x)=f(x).

Show $f(x) = x^2 + 5$ is even algebraically. Verify on your calculator. $f\left(-\chi\right) = \left(-\chi\right)^3 + 5$

Q: If f is even and (a,b) is a point on f, what other point do we know is also

Odd Functions

1) Graphically: a function is odd if f(x) is symmetric about the origin.

2) Algebraically: a function is odd if f(-x) = -f(x).

Show $f(x) = x^3 - x$ is odd algebraically. Verify on your calculator. $f(-\chi) = (-\chi)^3 - (-\chi)$ $= -\chi^3 + \chi$

$$=-\chi^3+\chi$$

Q: If f is odd and (a,b) is a point on f, what other point do we know is also on

HOMEWORK

...how well do you know your calculus jargon?

1.3 (p. 38): 1-4, 19-22, 26, 29, 33, 35, 61, 67, 77, 79, 83-86 (don't need to graph by hand first; just use a graphing calculator)

Jul 19-8:08 PM

Jul 31-11:47 AM

Solutions of Equations

Equations in two variables, such as x + y = 1, have solutions that are ordered pairs (x, y) such that when the first coordinate is substituted for x and the second coordinate is substituted for , the result is a true equation.

Example 1

Find a solution to x + y = 1And another! And another!

Can you list all of the solutions?

Graphs of Equations

The equation in Example 1 actually has an _ _ number of solutions. Although we cannot individually list every solution, we can make a drawing (or a $\mbox{\it graph})$ to represent the solutions. One way to do this is to pick values for the independent variable (_____) and find the corresponding values for the dependent variable (_____). Plot the points you found and then connect them.

Dec 5-12:39 PM Dec 5-12:43 PM

OK, LET'S TALK ABOUT TWO IMPORTANT FUNCTIONS.
THIS MAY OR MAY NOT BE REVIEW.

Jul 19-9:01 PM Jul 31-11:36 AM

Absolute Value Function f(x) = |x|Domain:
Range:
Intercept:
Decreasing on:
Increasing on:
Even/Odd/Neither
How to enter in calculator:

Jul 31-11:39 AM Jul 31-11:39 AM

Dec 15-10:43 AM